
Applications of genetic algorithms to the solution of ordinary differential equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys. A: Math. Gen. 26 3503

(http://iopscience.iop.org/0305-4470/26/14/017)

Download details:

IP Address: 171.66.16.62

The article was downloaded on 01/06/2010 at 18:58

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/14
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I. Phys. A~Math. Gen. 26 (1993) 350<3513.~Rinted in the-UK 

Applications of genetic algorithms to the solution of ordinary 
differential equations 

D A Diver 
Depamnent of Physics and ~stronomy, uNv&q of Glasgow, ~ h s g o w  G12 aw, uK 
Received 11 November 1992, in final form 8 FebNary 1993 

Abstract. A novel genedc algorithm has teen developed and applied m the solution of ordinary 
differential equations. The algorithm solves the equations by a pmcess of breeding belie1 
candidate solutions From a family of estimates, and leams to retain the best features as it 
progresses. This self-learning system is inhinsidy parallel. and capable of handling linear and 
nonlinear equations. both stiff and non-stiff. 

Genetic algorithms are a key element in arrificial intelligence and machine leaming, playing 
a significant role in optimization and robotics. In this document, the application of genetic 
algorithms to the solution of ordinary differential equations is presented as a radically different 
way of approaching numerical sintdations, and is of impofianoe to many disciplines. 

1. Introduction 

The genetic algorithm (GA) is a self-adapting strategy for searching, based on the random 
exploration of the solution space coupled with a memory component which enables the 
algorithm to leam from experience the optimal search path. The analogy with nature 
is clear: the evolution of a species can be regarded in an elementary way as a random 
exchange of genetic information (that is, breeding) with natural selection ensuring that the 
surviving variants are only those evolved forms which are advantageous to the species' 
ability to exploit its environment. The GA is based on the same premise. Given a large 
database or solution space to search according to some extemal criterion, the GA will find an 
optimal route to the ultimate goal by a process of trial and enor, learning from mistakes and 
preserving the most successful aspects of performance at each stage, until finally the best 
possible combination of information is attained. The governing process is natural selection, 
and the performance criterion encapsulates the physical meaning of the task in hand. Of 
fundamental importance is the fact that the GA is essentially a parallel algorithm, with the 
genemtion of each new pool of knowledge a naturally independent process. Thus such 
algorithms are the most efficient exploiters of parallel architecture in computer hardware, 
since their intrinsic design is based on the assumption of non-interrelated steps. 

Since the design philosophy of the GA was first proposed (Holland 1975) many textbooks 
have been written explaining the technique in detail and illustrating its use in simple 
situations; the reader is encouraged to consult these for a fuller description of the process 
(see for example Goldberg (1989) and Davidor (1990)). 

Typically, GAS are applied to sorting problems in which the size of the database to be 
searched and ordered is too big to enumerate each and every possible permutation, and so 

0305-4470193/143503+11$07.50 @ 1993 IOP publishing Ltd 3503 



-- ~- 

3504 D A Diver 

a GA is harnessed to accomplish the goal. There are many diverse applications of such a 
useful technique, from discrete optimization (Herdy 1991), robot nagivation (Jo and Didier 
1991). pattem recognition (Mahlab et 41 1991, Bhattacharjya et 41 1992) and seismic data 
processing (Wilson and Vasudevan 1991), to finding the most efficient orientation of magnets 
in an electron accelerator (Hajima et ol 1992). 

An example familiar to all is the travelling salesman problem (Grefenstette et of 1985) 
in which an optimal route around a territory must be computed, such a route being the 
shortest path that visits each and every designated site once only. Numbering each site, a 
specific GA approach in this case is to represent each possible route by the character string 
comprising the concatenation of the site indices in the order visited. Associated with each 
string is the total travelling distance. The GA attempts to construct better routes by a breeding 
process, which involves selecting two routes at random from an initial pool of possibilities, 
and randomly reassembling sections of each of the parent strings into a new string. This 
process is repeated many times to assemble a large collection of such objects, all derived 
from the initial stock. The distance associated with each route is then calculated, and only 
the best from the entire stock of parents and offspring are selected to be the seed coin for the 
next iteration. In this way, desirable features are propagated from one iteration to the next, 
with shorter routes multiplying at the expense of less successful ones. This crucial feature 
of self-learning makes the GA adaptable to many complex, multi-parameter problem solving 
situations arising in many diverse areas of system modelling, whether physical, biological 
or statistical. 

This paper details how the same general technique may be applied to the solution of 
ordinary differential equations (ODES). The candidate solutions are represented as strings, as 
in the travelling salesman problem, but this time the strings represent indirectly the numerical 
value of the ODE solution. This is a crucial step, allowing a compact encoding of quantitative 
information. The performance criterion in this context is a measure of how well a particular 
candidate solution satisfies the ODE and its boundary conditions. The breeding process is 
then one in which successively better approximations to the actual discrete representation 
of the solution are manufactured by a self adapting process designed to converge with the 
minimum of user interference, and the maximum flexibility and numerical stability. Loosely 
speaking, the GA guesses what the solution is initially, and then chooses the best pieces and 
assembles the finest educated estimate of the solution possible after finitely many iterations. 

The solution of ODES by this technique is a fundamentally different type of problem 
from the sorting exercise exemplified by the travelling salesman puzzle, in that the latter 
has a finite domain in which to search for the definitive solution, but the former has, in 
principle, an infinite domain, since the evaluation of a solution to a differential equation 
must necessarily range over the entire continuum of real numbers, with no prior information 
limiting the excursions available in principle from the differential operator or its boundary 
conditions. 

This paper sets out how one such algorithm, GENODE, attempts to implement the 
solution of ODES using a CA. The breeding algorithm is more complex than the simple 
crossover of early GAS (Goldberg 1989). since it embodies problem specific knowledge and 
recovery strategies to avert premature convergence. The penalty weighting is multifaceted, 
designed to assess not only the quality of satisfaction of the differential equation, but 
also boundary conditions including gradient criteria, continuity and point resolution. The 
following sections analyse each aspect of the GA approach in detail, before presenting 
examples of its performance and a discussion on how further progress might be made. 



Applications of GAS to the solution of ODES 3505 

2. The algorithm 

2.1. Breeding a solution 

The algorithm developed for use in the solution of ODES is detailed in this section. Consider a 
discrete representation of the function y ( x ) ,  with values yi at the points xi ,  that is yi = y(xi) .  
We will choose to span the space of yi values by forcing yi to .be integer multiples of two 
real numbers /A and U, selected to yield unique represen@tions of the values of yi in a 
predetermined appropriate range. Thus we have 

yi = mb +nu where m ,  n E Z. (2.1) 

GENODE takes the internal representation of this numerical profile as the character string 
conshucted by concatenating the ms and ns  for each discrete value of the function y .  For 
example, the k m  member of.the pool of candidates, y" is represented as 

y"'=mlnl  ... m,n, ... m f n f  (2.2) 

where the function y is evaluated at the points x1 . . .xf: The mi and tq are functions 
of k ,  but this has been omitted from the notation in the interests of clarity. The breeding 
algorithms starts with N p  such strings representing the parental stock, and generates offspring 
as follows: 

(i) two parents are selected'randomly from a choice of N p  candidates; 
(ii) random sections of the character stings are selected from each parent; 
(iii) an offspring is generated by randomly assembling these sections into a string of the 

same length. 

C ledy  (iHiii) describe only superficially the breeding process. At each stage, the character 
strings are of the same length. Hence, though the length of section chosen randomly from 
the first parent is arbitrary, it cannot exceed the maximum length. Consequently the section 
chosen from the second parent cannot exceed the difference in length between the first 
section and the maximum string size. When these two sections fall short of the fixed 
length required to construct a valid offspring, the remaining spaces are filled by a mutant 
string generated randomly to fit the gap. This.process ensures that there is no bias in 
choosing sections of genetic material, and pat there is~always a mechanism to introduce 
fresh variations in the stock. This latter point is particularly important, since the solution 
space spanned by a differential equation is not predetermined by the boundary conditions 
or the magnitudes of the coefficients in the operator, and so the generation of the exact 
solution cannot be merely a permutation of elements in a finite stock of candidates as in 
the travelling salesman problem, for example. This fundamental concept is also at the 
heart of the string representation defined by (2.1) and (2.2). which ensures that @e function 
values are discretised in a controllable way. Normally the values of yj = y(xi)  would be 
drawn from the continuum of the real numbers, regardless of the discretized x-axis. This 
is impractical in this algorithm, since a full binary representation of each number would be 
required, instead of the compact notation of (2.2). 

2.2. Assessing3tness 

Given a full generation of parents and offspring, the natural selection process requires that 
only the best be selected as the parents of the next breeding cycle. The assessment exercise 



3506 D A Diver 

in this context is the evaluation of how well the candidate satisfies the differential equation 
and boundary conditions. The latter aspect is automatic, in respect of boundary values, since 
each candidate has the required boundary values assigned at the breeding stage. overwriting 
the generated information at the endpoints with the required representation. Assessing the 
quality of fit to the differential equation is rather more involved. 

Let the differential equation be of the form 

u(x)y” + b(x)y’ + c(x)y = 0 (2.3) 

used to represent derivatives, so that where ’ denotes d/dx. Central different operators 
for example 

Y’(xi) = Y: = ( Y ~ + I  - ~ i - 1 ) / ( 2 h )  Y: = (yi+l - Zyi + yi+l)/hZ (2.4) 

where h = x; -xi- ,  is the spacing in the x coordinate, assumed constant. The differential 
equation (2.3) is then represented by the central finite different algorithms (2.4) and coded 
as 

{u;/h2 + bi/(2h)}yi+l + (ci - &/h2}Yi + h l h 2  -bi/(2h)}yi-1 (2.5) 

where U;,  bj = u(x;), b(xj). Clearly nearest-neighbour interaction is defined by (2.5). and 
berefore special arrangements must be made at the endpoints. Using quadratic exmpolants 
At each end, the full central difference operators can be applied, and expressed as 

Y ;  = (-3Y1 + 4Yz - Y3)/(uf) Y ;  = (YI - 2Y2 + Yd/ (h2) .  (2.6) 

Note that in fact the form of the second derivative at the end point is identical to that at 
the penultimate: this is a consequence of second-order differences applied to a quadratic 
extrapolant. Using (2.5) together with the amended form via (2.6) for the end points, the 
full differential operator is discretized, and can be applied to a discrete representation of a 
Candidate solution stored as an array of y-values. Hence, given a string representing the 
punerical profile of a possible solution to (2.3). the compact form (2.2) is expanded into a 
$et of real numbers to which (2.5) is applied. If the candidate is indeed the exact solution, 
then (2.5) will yield 0 at every point y (to within the finite difference approximation). 
Suppose that Rj is the result of applying the differential operator to every point xi of the 
candidate solution, i = 1, . . . , Nps. Then crude measures of the quality of fit are 

If gradient information is given in addition to boundary values for the equation, this may 
also be used to measure fitness, by assessing deviations in the candidate from the desired 
trend. GENODE USeS the penalty 

6 €3 = e - 1 where S = Iy’ - y’*[ evaluated at the end points 

y‘ being the actual value for the candidate in question, and y“ denoting the desired gradient 
specified by the user. Note that although a second order ordinary differential equation 
requires only two pieces of information formally to specify completely the solution, in 
the case of the numerical solution of boundary value problems (the focus of attention in 
the next section) it is normal practice to overspecify the boundary conditions in that the 



Applications of GAS to the solution Of ODES 3507 

unknown and its gradient are given at both boundaries, with the proviso that only two of 
these pieces of information are exact, and that both cannot be assigned at the same point 
in a boundary value problem. GENODE uses the same tactic, making the actual boundary 
values unalterable, but assigning penalties if the calculated gradients differ from the desired 
trend. 

A further penalty weighting is used in GENODE, namely 

€4 = max(R,( i = 1, Npb 

which measures the continuity of the proffered candidate solution. The final penalty Wk 
associated with the kth candidate y(’) is the weighted sum of 6;. i = 1, , . . ,4, the weights 
being supplied by the user at run time. In this way. the quality of fimess of each candidate 
is assessed with respect to the major components, namely boundary conditions, continuity 
and membership of the kemel  of the differential operator. When this penalty is attached 
to each candidate, and the entire stock ranked, only those with the lowest score will be 
selected as parents for the next breeding cycle. 

Note that both €1 and €2 are used in assessing the overall suitability of a candidate as a 
member of the operator kemel. This is because helps to differentiate between otherwise 
similar solutions, since the candidate with the lower €2 has a more accurate string section 
somewhere in its make-up, and consequently will be ranked higher since local precision is 
the ultimate goal. 

2.3. Avoiding prehture convergence 

The goal of the breeding programme is to promote-the emergence of a dominant genetic 
code, which is the compact representation of the solution to the ODE. At each breeding 
stage, improvements are promoted to the parent gene pool by virtue of their lower penalty 
weighting, so that better information is used in subsequent generations with the ultimate 
aim of converging on the best possible form. In order to keep the process of evolution in 
operation, the ‘environment’. must  change^ or pose sufficient challenges that the breeding 
stock is induced to shive for still better results. If conditions are only slowly changing, 
there is a danger that a suh-optimal form will come to dominate the entire stock, wiping out 
all diversity and effectively creating a genetic cul-de-sac. The environment in this analogy 
corresponds to the sampled part of the solution space represented in the entire breeding stock, 
and weighted by the differential operator. The genetic cui-desac then takes the form of an 
inadequate candidate for the solution of the ODE which is better than its contemporaries, but 
has features which must be improved by surmounting a local maximum in the weighting 
function to achieve a much better improvement. The GA becomes very inefficient under 
such circumstances, since the accumulated experience of the algorithm forms too narrow a 
base. from which to evolve better forms (see discussion by Davidor (1991)). 

In order to prevent this occurrence, GENODE employs the following smtegies. After a 
Specific number of iterations, GENODE suspends the normal breeding process for one cycle, 
replacing it by a ‘tweaking’ process in which all the parents have small changes made to 
their genetic code in order to test whether such a minor alteration can improve the overall 
weighting. This relaxation.is done in several ways. 

If the best parent has a weighting greater than some preset threshold, then each parent 
is taken in turn and its entire string is altered by adding random noise to the m values. 
The usual number of derived offspring are geneked by this coarse tuning process, and the 
sorting and evaluation proceeds as before. An element of learning is retained by restricting 



3508 D A Diver 

the amplitude of the noise, so that offspring generated in this fashion have some memory 
of their origin. 

If the best weight is below the threshold, a fine tuning process is instigated, not on 
the whole string, but on the worst part based on the location of the maximum excursion 
measure €4. A section of the parental string is altered by adding noise to the n values, so 
fine-tuning the worst point and its neighbours. The fact that only the n values are being 
altered is sufficient to retain the learning component, and so no restriction is placed on the 
noise amplitude. 

These two basic strategies apply after every N&* iterations, Ncdt having been set at 
execution time. However, the situation can arise where the parental stock is just Npar 
copies of the same string, with an associated non-zero weighting. In this circumstance, the 
relaxation procedure takes place automatically, using a combination of focused and general 
fine and coarse tuning where appropriate, and in altemate cycles, depending on whether the 
weight initially is above or below the threshold level. 

These recovery strategies help to avoid premature convergence in almost all cases, 
although there are very occasionally situations in which the best option is to restart the 
calculation with a fresh data set. 

2.4. Point resolution 

The use of second-order finite difference algorithms to represent the derivatives in GENODE is 
a potential source of error and inefficiency, because the finite difference method is subject 
to round off error, and because only the nearest neighbour interactions are involved in 
calculating gradients. The latter aspect is the more serious, since this means that information 
about the boundary conditions only filters into the interior points via the differential operator, 
and at a pace and strength of influence dicatated by the combination of derivatives in 
the differential operator. To be specific, any boundary information supplied has a direct 
influence only on the two points next to the actual endpoints; points interior to these are not 
exposed directly to these constraints, but leam to accommodate them through the application 
of penalty weighting. Clearly if the interior points predominate, then the influence of the 
boundary conditions will be difficult to assert, and the convergence will be very slow. 

GENODE has a strategy to circumvent this problem by solving the equation at six points 
initially: two endpoints and four interior points. This choice ensures that all function points 
(that is values of the unknown) are influenced directly by the boundary conditions and 
operator application at the endpoints, since a second derivative at an endpoint embraces the 
next two interior points. In this way, GENODE constructs a coarse solution over the poorly 
resolved interval. If better resolution is desired, GENODE bisects each interval and repeats 
the process. retaining the information generated at every other point and assigning values to 
the new points simply by averaging the calculated data on either side. This is an efficient 
use of the GA, since no attempt is made to evolve large and unwieldy data strings with 
only an indirect influence over the evolution strategy of the majority of the components. 
The resolution is thus improved exponentially, taking a fraction of the time it would have 
required had the solution evolved at all points from the start. This is analogous to the 
shooting method of conventional numerical solution techniques. 

2.5. Numerical srabiliry 

Since the GA does not attempt to iterate towards a numerical solution by prescribing 
explicitly the convergence strategy of an initial guess, the GA avoids the issue of the stability 



Applications of GAS to the soiution ojODEs 3509 

of  the numerical algorithm. For example, a stiff ODE such as 

y " - y = o  (2.8) 

has solutions y = e*. Attempting to solve (2.8) over the interval x E [O ,cc ]  for 
the subdominant solution y = e-x with a simple RungeKutta algorithm may lead to 
poor convergence because numerical round-off can never permit the total exclusion of the 
dominant form y = e+r, and ultimately this component will exert an ineradicable influence 
over the final shape of the solution. The GA approach will simply discard any intermediate 
construct exhibiting the significant presence of the dominant form, because the GA uses 
the differential operator only to assess a given candidate, &d not to suggest an iterative 
strategy towards a better guess. Hence the GA will also generate solutions with the dominant 
component present, but these will not survive the breeding process, and will eventually be 
replaced by more acceptable forms. 

3. Examples 

GENODE has been applied to the solution of a few problematic ODES in order to demonstrate 
the efficacy of using this method to solve boundary value problems. 

0 2 4 6 8 i J  

p b l o o  p2-100 f=100 d=OooE+Wphn~1 ,, 

Figure 1. Solution of equation y' + y2 = 0. With the given boundary conditions, the analytic 
solution is y = (1 fx)-'; OENODE'S output i s  shown as the curve with circles m!4ng the data 
points. 

The examples are detailed in the figures 1 to 4. The notation on each graph is as 
follows: E and S are as stated earlier, err is the threshold value of weighting discussed in 
section 2.3, where the weighting for the kth candidate is constructed as 

iplmin is a control parameter' used to restrict the search range (iplmin = 1 means do not 
select integers m and n which give negative y values, iplmin =--I  means no positive 



3510 D A Diver 
Genode.(v?fdJ war- 25 nbied-500 ~inc- 20 

10 

5 x ., 
:: $ 6  

4 

s 
% 

w 
d 4  

2 N 

J 

0 
0 1 2 3 4 5 

Genode (u2fd) r@ar- 3Onbisd-900 IIK- 10 

I P 
6 -  

2 

Figure 2. (U) Solution of the equation y" - y = 0, with general solution y = ae-" + k + I ,  

where a and b are ~ 0 ~ t a n t E .  Given the boundary mnditions. only the decaying solution is 
c o m f .  (b) Solution of lhe same equation as in 2(a), but over a larger range of x values and 
for pwrer point resolution. The circle s)mbols denote GENODE'S oulput, and the square  one^ are 
those produced by a standard NAG routine. (c) Showing the evolution towards the final form. 
with the shape of the best parent shown at every loth interation, thus Creating a 3~ picture of the 
development Note that GENGDE converges relatively quickly to Ihe rough shape, leaving only 
fine detail to be adjusted in the later iterates. The equation and parameter values are as for @). 



Applications of GAS to the solution of ODES 3511 

Genade (2 fdi npar=25 rbred=500 inc-25 . 

Figure 3. Solution of the Airy equation y" - xy = 0, with general solution y = ciAi(x) + 
eBi(x). The boundary conditions pick out the decaying solution Ai(x). The graph shows 
GENODE'S output for a six-point cnarse solution after 50 iterations (piangular symbols), and then 
the refinement of that solution achieved by doubling the number of points and continuing for a 
further 50 iterations (circular symbols). The tabulated values of the Airy function rahen f" 
Abramowitz and Stegun are shown (square symbols). 

Gwlode (v2fd) vir- 30 nbred=900 IN= 10 

~1 2 1 i 

p1.100 pi-100 1.100 d.lW ,pmn..1 

' Figure 4. Solution of the equation Y" +xy' + y = 0, with subdominant solution y = exp(-x*) 
using 11 data points. GENODE'S output after 80 iterations is shown (circular symbols) and a 
standard NAG routine is displayed for comparison (triangular symbols).' 

values, and iphin = 0 means no restrictions), npar is the number of parents, from which 
nbred children are manufactured, and the 'tweaking' process referred to in section 2.3 is 
performed every jinc iterations. The boundary values are given as parameters bvl and bvr, 
referring to the leftmost and rightmost y values respectively, and the gradients are. specified 
in an analogous way using the variables gvl and gvr. The parenthetical vZfd refers to 



3512 D A Diver 

the second-order central finite-difference formula version of the algorithm. The number of 
iterations quoted indicates the maximum number of iterations requested at the start of the 
computation, and therefore not necessarily the minimum number required to reproduce the 
solution. 

Examining figure 1, it can be seen that this simple nonlinear ODE presents little difficulty: 
GENODE converges on the appropriate form of the solution with no eouble. 

Figures Z(a) and (b )  show the results of a much tougher challenge, solving a stiff ODE 
over a significant range of x values with comparatively poor point resolution. This justifies 
the claim made in section 2.5 that stiff systems present no particular hurdle to GA solution 
methods. The surface plot shown in figure 2(c) illustrates the evolution of the final solution 
form, as the shape of the solution is plotted as a function of iterate number. Note that in 
the latter stages, only fine-scale tuning of the solution takes place. 

This stability aspect is further emphasized by solving the Airy equation, as shown in 
figure 3. This shows GENODE'S point resolution strategy, where the curve marked with the 
triangular symbol has only six data points, giving a coarse fit after 50 iterations. This coarse 
fit was refined by doubling the number of points, and iterated a further 50 times to produce 
the curve with the circular symbols. The third curve is a plot.of values of the Airy function 
taken from Abramovitz and Stegun (1972). 

The last curve, figure 4 shows GENODE again performing a tough calculation, seeking 
the subdominant solution in a stiff ODE. 

These examples compare GENODE'S performance with the NAG library routine DOZHAF, 
a general purpose boundary value solver using a combination of Runge-Kutta-Merson and 
Newton iteration in a shooting and matching technique. Whilst the GA is slower, it is 
reasonably accurate considering it does not employ an advanced deterministic convergence 
strategy such as NAG uses. 

4. Summary 

GENODE has been applied to various ODES, both stiff and non-stiff, and is capable of 
solving boundary value problems accurately and efficiently. Since the heart of the code 
is the breeding algorithm, GENODE does not require to be tailored to suit each ODE: one 
algorithm tackles all. In particular, the only real input required of the user is the value of 
the coefficients in the candidate ODE. Currently the user is invitee. to choose from a menu 
of possible ODE forms as follows. The general ODE takes the form 

and a compact, second-order finite difference form of this equation is encoded within 
GENODE. The user then has to specify the values of the coefficients C,, the soiution interval, 
the number of points at which the solution is required and the boundary conditions. GENODE 
can then proceed with default parameter values for the number of parents and children, error 
levels, etc. if the user so desires. At no point is the user required to encode any Fortran, 
or alter the source code of GENODE in~any way to tailor the solution method to a particular 
ODE: GENODE leams its own strategy. This is an important difference between this approach 
and that of the NAG library, for example. Moreover, stiff systems pose no threat, since those 
calculations displaying an undesirable trend are merely discarded 

Herein then lies the power of GENODE: a multipurpose, self-leaming numerical solver 
that is stable in all situations and easy to use. Independent of library routines, it is readily 



Applications of GAS to the solution of ODES 3513 

parallelized and general in application. Whilst it does not always offer the precision of 
advanced conventional solvers, it may be valuable in calculating an excellent estimate of the 
form of the SOlutiOn as input to a high precision solver such as NAG W2RAF. It is in this area 
that major applications of GENODE are planned in future research plans: solving COmpfiCated 
boundary value problems in stellar structure of fluid flows in constrained geomeay are of 
particular interest 

In order fully to exploit the power of GENODE, and develop its full potential in Other 
applications, it must be run on a parallel machine. The algorithm strategy is intrinsically 
parallel, since offspring are independent: in fact the only serial process is the ordering after 
each step. Serial computers impose huge execution penalties on GENODE, making further 
development time consuming and impractical. New technology must be harnessed in this 
novel approach, and GENODE is an ideal example of new generation computing strategy. The 
flexibility and awesome power of parallel processing make it imperative that new approaches 
to numerical simulation be developed which are designed to exploit such advances. GENODE 
is a prime example. 

GENODE is written in Fortran 77, using the Salford "386 compiler. The random 
number generator routine at the heart of the algorithm is taken from the NAG library, although 
"386 is supplied with an equally acceptable one. 

Acknowledgments 

The authors wishes to thank SERC and the Nuflield Foundation for financial support, and 
colleagues in the Department of Physics and Astronomy for their constructive comments 
and enthusiasm. 

References 

AbGowitz  M and Stegun I A 1972 Handbook OfMarhrmarical Funcrions (New York Dover) p 475 
Bhanarcharjya A K, Eecker D E and R o y "  B 1992 Signal Processing 28 3 3 5 4 8  
Davidor Y 1990 Generic Algorirhms and Robotics (London: World Scientific) 
Greffenstette J J. Copal R. Rosmaita B J and Van Gucht D 1985 Pmc. Isr Inr. CO@ on Genetic Aigorirhms and 

Goldberg D E 1989 Generic Algorihms in Search. Optimimlion and Machine Learning (New York~Addwn- 

Hajima R, Takeda N. Ohashi H and Akimaya M 1992 Nucl. Inslrum. Mefhodr A 318 822-4 
Herdy M 1991 Lecture Nares in Computer Science 496 188-92 
Holland 1 H 1975 Adaptation in Narurnl and Artijiciai Sysrem (Ann Arbor: The University of Michigan Press) 
Jo D and Didier K 1991 Lecrure Notes in Compurer Science 4% 352-62 
Mahlab U, Sharmu J and Caulfield H J 1991 Oprics Lett 16 648-50 
Wilson W G 1991 Geophys. Res. Lett. 18 21814 

Their Appiicarions (Hillsdale. NI: Lawrence Erlbaum Associates) pp 160-8 

Wesley) 


